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HOW STUDENTS STRUCTURE THEIR OWN INVESTIGATIONS
AND EDUCATE US: WHAT WE'VE LEARNED FROM A

FOURTEEN YEAR STUDY
Carolyn A. Maher

Rutgers University, New Jersey

This talk reports on a portion of a fourteen-year study of the mathematical thinking of
a cohort group of students that is based on an identifiable perspective on how
mathematical ideas are built. Three videotape episodes are presented so that we can
view together groups of students working together at three points in time: as fourth
graders (ages 9-10), and in grades 10 and 11 (ages 15-16). Excerpts from interviews
are offered to provide student perspectives on their own learning over the years.

INTRODUCTION

Choosing a theme for this paper has been difficult; fourteen years of research have
provided many possibilities'. After much deliberation, I decided to focus on how
students, working in small groups, structure their investigations and what we have
learned so far by studying how their ideas develop. This talk will introduce some of
the students who participated in elementary and secondary school, and later as
college students. During the last few months, several of these students have talked
with us about their participation in the long-term study.2 These data along with
interview data from their upper-high school years are included here.3

Videotape and written data come from students' early investigations of counting
problems in elementary school, through their investigations of combinatorics and
probability in middle and high school, and their investigations of ideas related to
calculus in high school time (Kiczek, 2000; Kiczek, Maher & Speiser, 2001; Maher
& Martino, 1996a, 1996b, 2001; Maher & Kiczelc, 2000; Maher & Speiser, 1997;
Martino, 1992; Muter, 1999; Speiser, 1997; Speiser, Walter, Maher, 2001).
Observations and analyses of the students' early explorations provide foundations for
later thinking about particular ideas in mathematics. Videotape data make it possible

I We would like to thank the Kenilworth students for their continued, invaluable contributions to
our work. Thanks, also, to the research team for their dedicated work on the project.
2 Jeff, Romina, Michael and Brian, now second year college students, joined graduate seminars in
which video segments of problem solving were viewed together. The seminar sessions were audio
or videotaped. In these sessions, the students talked about how they learned by working together.
3 Fred Rica, Principal of the Harding Elementary School, Kenilworth invited me, in 1984, to visit
his school and to observe mathematics lessons. These earlier classes, for the most part, emphasized
drill and memorization. Inspired by the belief that the children's mathematics learning could be
significantly improved, a three-year teacher development project was launched in 1984 between the
Kenilworth Public Schools and our group at Rutgers (See O'Brien (1995) for a ten-year analysis of
the teacher-development project). The longitudinal study was an outgrowth of the partnership.
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to view these sessions together. The three episodes -The Gang of 4 (ages 9-10);
Romina's Proof (ages 16-17), and the Night Session (ages 17-18) - taken together,
provide illustrations over time of how the students worked together in small groups,
and of how the teacher(s)/researcher(s) interacted with them. Finally, video clips of
student interviews (ages 17, 18, and 19) provide further commentary by participants
about their own learning. Jeff (March 2002), reflecting on his participation in the
research since grade one, focuses on the depth of their investigations and the
impression this left on him.

You didn't come in and say, "this is what we were learning today and this is how you're
going to figure out the problem." We were figuring out how we were going to figure out
the problem. We weren't attaching names to that but we could see the commonness
between what we were working on there and maybe what we had done in school at some
point in time and been able to put those things together and come up with stuff and to do
these problems to come up with, what would be our own formulas because we didn't know
that other people had done them before. We were just kind of doing our own thing trying
to come up with an answer that was legitimate and that no matter how you tried to attack
it, we could still answer it. It was a solid formula that works no matter how you tried to
do it

BACKGROUND, PURPOSES, RATIONALE

The study was initiated in 1989 with a class of 18 first-grade children at a public
school in a working-class community (Martino, 1992; Maher and Martino, 1996b)'.
The work reported here is a component of the longitudinal study of the development
of students' mathematical ideas. Attention has been given to studying how learners
build mathematical ideas, create models, invent notation, and justify, reorganize,
extend, and generalize their ideas. Data come from a cohort group of students whose
mathematical activity has been followed by the research team for over 14 years'.

The main objective of our research has been to gain a deeper understanding of
mathematical learning when particular conditions are in place. We have been
interested in creating conditions whereby we can give children an opportunity to
show us how they think about mathematics. These conditions are essential to the
context of the study and may be helpful in understanding issues of commitment,
motivation, and value to participating students. In the early years of the project,

The class was one of three first grades in the elementary school. The students in each class
remained together for their first three years of elementary school. In grade four, new classes were
formed. The study continued with a smaller subset of the original class and several other students
who joined. The group that was followed for fourteen years consists of seven students; others
(seven) participated for approximately eight years.

Earlier work for this study was supported, in part, by National Science Foundation grants
MDR9053597 (directed by R.B.Davis and C.A.Maher) and REC-9814846 (directed by C.A. Maher)
The opinions expressed are not necessarily of the sponsoring agency and no endorsement should be
inferred.
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when the research was conducted in classrooms, these conditions, negotiated with the
participating school district administrators and classroom teachers, guided the
establishment of the context for our research. What came to be called "Rutgers
mathematics" occurred in the early elementary years four to six times a year, for three
days duration. For two of the days, their math period was extended approximately an
hour to an hour and a half. The third day was the regularly scheduled math time of
about 45 minutes. Students continued conversations through follow-up individual or
small group interviews, the same or the following week. When feasible, the classroom
teacher observed the interview.

Interview design was motivated by our observations of the children doing
mathematics in the classroom and of our study of videotapes and researcher notes.
For example, we might notice that there would be an interesting idea that was being
pursued by a child or a group, and we would ask the children to tell us about what
they were doing. In the interview setting, we invited the reconstruction and extension
of ideas put forward. To a large extent, the direction we took in the presentation of
investigations was inspired by what the children showed us in their talking, drawings
inscriptions, and building of physical models.

Students were invited to think about mathematical situations, often over long periods
of time. They were asked to present their ideas with suitable justifications that were
convincing to them (and to us) and to consider generalizations and extensions. They
were not graded for their work; they revisited problems over months and years; they
offered arguments for the validity of their solutions. Ideas were listened to and
treated with respect by the teacher/researcher(s). In the early years, we called the
students' attention to the variety of ways they represented their ideas, with the intent
of making public both similarities and differences in their thinking (Maher, 1998a).
We invited reflection and discussion among students about such differences (Maher,
1998b; Maher, Martino & Pantozzi, 1995; Maher, Davis & Alston, 1992). The
children, in justifying their ideas, provided arguments that exemplified several
important types of mathematical proof, for example, proof by contradiction, proof by
cases, and reasoning by induction. In the later years, we observe students using all
these forms of reasoning as natural parts of their discourse.

During the first eight years, the study was classroom based. Since high school,
cohorts of students participated in small group after school sessions. This came about,
at least in part, because the county school district formed a regionalization of the high
schools. This resulted in the closing of the Kenilworth high school for several years.
Most of the children, upon completing 8 years of elementary school, continued to a
regional high school in another town. Others attended parochial schools in the area.
Public pressure from Kenilworth citizens (and from some neighboring communities)
to regain their local high school led to a public referendum that resulted in a vote to
de-regionalize the schools, an historical event for the state. Some local high schools,
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including Kenilworth, re-opened in 1997 and most of the original students in the
study were reunited. In that interim year, we continued our research with several
students after school hours in private homes. The interest of students to continue once
their high school was re-opened sparked the continuation of what we refer to as
"after-school" mathematics. In 1996, classroom research was replaced largely by
small group research.

THEORETICAL PERSPECTIVE ON LEARNING

We investigate the development of mathematical ideas by examining, from moment
to moment, the development of students' thinking as it is indicated by their
conversation and their inscriptions as they work on well-designed investigations.6
The guiding framework for this level of analysis comes from research on
representations (Davis, 1984; Davis & Maher, 1990; Davis & Maher, 1997; Goldin
2002, 2000; Kiczek & Maher, 1998; Kiczek, Maher & Speiser, 2001; Maher &
Martino, 1997; Maher & Davis, 1995). In doing mathematics, mental images can be
formed by individuals, to be used in building representations of mathematical ideas.
These representations can be carried forth and used, and revisited and modified, in
the light of new experiences. Although the internal, cognitive representations are not
available to us and perhaps the individual, certain features of them can be made
public and open to discussion. This can occur as ideas are explained, justified and
shared with others. To represent an idea, an individual may create a structure or
present a notation. In this way, the ideas are made public in their discourse in the
form of explanations, actions, writings, and notations. Records make possible later
re-examination of the relationships between ideas. In this way, the ideas can be
discussed and reflected upon (Dorfler, 2000).

RESEARCH METHODS

We regard events as connected sequences of utterances and actions by the learners.
An event is called "critical" when it demonstrates a significant advance from previous
understanding, or a conceptual leap in earlier understanding, or the identification of a
cognitive obstacle (Maher & Martino, 1996a; Kiczek, 2000; Steencken, 2001). These
episodes are obvious and striking in that they can be connected to prior events.
Identification of critical events makes it possible to examine their influence on later
understanding and to trace the development of ideas.

Data Source. Our main sources of data are: (1) behavior of students as they work on
mathematical investigations recorded on videotape; (2) written work of students; (3)
follow-up interviews of individual or small groups of students, often taking the form

6 The mathematical investigations posed are central to the research. To view the tasks, visit the
Robert B. Davis Institute for Learning website, http://www.rbdil.gse.rutgers.edu
7 Willi Dorfler (2000) makes an important distinction between the visible representations and the
internal, cognitive (re)presentations that are not visible to us.
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of teaching experiments; (4) individual student interviews; and (5) researcher notes.
Groups of us observed the children, took notes, noticed behaviors, and developed
interests in what they produced individually, together, and through sharing with
others. At various times, students revisited tasks and talked about their ideas. It was
not uncommon for ideas to re-emerge for discussion over long periods.

Videotaping. Videotapes are made of nearly all sessions or task-based interviews.
These have three main forms: (1) videotapes of task-based (or "clinical") interviews,
where there would usually be one interviewer, one student, and two camera operators
(one to record work; the other to record the conversation.) Also, two or more
observers take notes, but not in view of the student; (2) videotapes (made outside the
classroom in an office or quiet setting) similar to those just described, with 2-5
students working together on a task. During student investigations, there is usually no
interviewer present. There are two cameras and a sound technician; (3) videotapes
made in actual classroom settings, but otherwise similar to the second category with
small groups of students working together. There are three cameras and two sound
technicians. Our research results emerge through systematic study of extensive,
archived videotape data, often from tape segments, which now, because of recent
data, have been re-analysed from new directions, with newly developed tools and a
more detailed framework.9

FRAMEWORK FOR ANALYSIS

A framework is offered that takes into account how ideas develop and travel within
the group and how the teacher/researcher interacts in the process. The analysis begins
with the identification of critical events. The mathematical content of each critical
event is identified and described, taking into account the context in which the event
appears, the identifiable student strategies and/or heuristics employed, earlier
evidence for the origin of the idea, and subsequent mathematical developments that
follow its emergence. Together, these components provide a "trace", the data tracking
the development of the idea(s) (Maher & Martino, 1996a; Maher, Pantozzi, Martino,
Steencken & Deming, 1996; Kiczek, 2000; Steencken, 2001).9 We identify and code
their traces in the form of diagrams. Concurrently, transcripts are verified, and
explicitly co-ordinated to diagrammed events. Our interpretations evolve from all of
these.
Event diagrams and codes.1° Each critical event defines a timeline, consisting of a
past, a present and a future.

See Davis, Maher & Martino (1992) for a discussion of using videotapes to study the construction
of knowledge.
9 The set of connected critical events with past, present and future defines a "pivotal strand". See
Kiczek (2000) and Steencken (2001) for a discussion of pivotal strand.
I° The framework was developed for the National Science Foundation grant MDR9053597 and
further elaborated and extended in the project work. See Speiser (1998) for a prototype-coding

PME26 2002 1 - 35

BESTCOPYAVAILABLE

6



past present

(critical event)

future

The critical event itself defines the present. Prior images to which the critical event
folds backs' define the past (both recent and more distant), while later events which
help us understand (or fold back to) the present critical event define its future. The
timeline is followed in strands of analysis, all of which are coded.

Constructing a storyline. Coded nodes denote events along the timeline, and
descriptive codes are used to mark strands of events which we call the "flow of
ideas". The construction of a storyline begins with the flow of ideas. We examine and
identify codes and their respective critical events in an attempt to trace an emerging
and evolving story about the data. A storyline is constructed from a coherent
organization of the critical events, and often involves complex flowcharting. Hence,
the process of producing a trace involves identifying a collection of events, coding
those events, and then interpreting them, to provide insight into a student's cognitive
development. The trace contributes to the narrative of a student's personal intellectual
history as well as to the collective history of a group of students who collaborate.

Constructing narrative. In our model, a narrative phase enables researchers to view
the recorded material from the data set holistically. Although they appear last,
interpretative actions actually begin from the inception of research; they are
originally formulated through theoretical perspectives and research questions of
interest (Powell, Francisco & Maher, 2001).

TASKS AND VIDEO SEGMENTS"

Three tasks and video episodes are considered here. The tasks are selected from the
counting/combinatorics strand and the episodes span an eight year period.

Grade 4 Task: Building Towers. Convince each other and the researchers that you
found the number of towers that could be made 3-cubes tall, selecting from two
colors.

scheme for critical events and Powell, Francisco & Maher (2001) for further discussion of the
framework and methodology.
II See Pine & Kieren (1994).
12 See the Private Universe Project in Mathematics (PUP-Math), 2001 for video episodes and
accompanying workshop materials at http://www.leamer.orgichanneliworIcshops/math and Maher,
Alston, Dann & Steencken (2000).
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Grade 10 Task: Ankur'sI3 Challenge. Find as many towers as possible that are 4-
cubes tall if you can select from three colors and there must be at least one of each
color in each tower. Show that you have found all the possibilities.
Grade 11 Task: Pascal's Triangle. For Pascal's triangle, how does the addition rule
work?

In a May 1999 interview, seventeen-year old Jeff describes the way the students
work. He reports that members of the group would put forth their ideas, review them,
and select the most salient. He points out that the ideas of others are to be valued.

Well, we break up into groups...like five groups of three, say, and everyone in their own
groups would have their own ideas, and you'd argue within your own group, about what
you knew, what I thought the answer was, what you thought the answer was and then
from there, we'd all get together and present our ideas, and then this group would argue
with this group about who was right with this...

Grade 4 Task: Building Towers. In grade 3, the students worked on building
towers, 4-tall and 5-tall, selecting from two colors. Sixteen months later, in the fourth
grade, they investigated towers 5-tall. About one month later, a group interview with
fourth graders: Jeff, Michelle, Milin, and Stephanie was conducted. In this session,
we were especially interested in what made the students' reasoning convincing. For
about half an hour, the students shared their different approaches.

Grade 4 Video Episode: Gang of Four." In grade four, Jeff, Michelle, Milin and
Stephanie discovered the idea of mathematical proof. For at least a year before this,
the children had been building arguments in their block tower investigations in which
they controlled for variables, argued by cases, and used inductive reasoning and
argument by contradiction. For example, in the case of towers, students noticed that,
as they built from towers of height n to height n+1, thy could choose one of two
colors, thereby doubling the number of towers. So they investigated a doubling idea
and come up with a doubling rule and posited this as a generalization. Other students,
in looking for patterns, recognized certain organizations that accounted for all
possibilities of a given height, and suggested an argument by "cases".

In an interview, Mike (May 1999) talks about exploring and gaining understanding:

In our class, all we did was just explore. We took days at a time, and I have a good
understanding of it...like, if you were going to, I guess, a normal class, you'd have to be,
like, only selected kids might understand it. But in a class where everybody's working

13 For a full discussion, see Muter (1999).
14 See Maher & Martino (1996a, b) for a transcript of the videotape session and an analysis of the
data.
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together, everybody's a part of the teaching, and everybody, or at least the majority of kids
will understand it.

Grade 10 Task: Ankur's Challenge. In the 10th grade, five students ( Ankur, Brian,
Jeff, Romina, and Michael) met again and considered variations of the tower
problems. First, they were asked to find all 5-tall towers, choosing from colors, red
and yellow, such that each tower contains 2 red cubes, and to justify their solution.
Mike and Ankur quickly solved the problem. While they were waiting for the rest of
the group, Ankur poses another problem:

How many combinations can you make with towers four tall, selecting from a choice of 3
colors, and using at least one of each color in every tower?

They worked on Ankur's new problem for approximately 15 minutes. Mike and
Ankur, after calculating that there were 81 total towers when selecting from 3 colors,
returned to the conditions of the problem and, by subtraction, came up with 39
towers. Romina, working with Jeff and Brian, said that there were 36 towers.
Michael continued to work on the problem by himself. Unaware of the work of
Romina and her group, he asked to hear their. solution. Romina went to the
chalkboard and presented her justification." She indicated that the set of all possible
towers could be partitioned into six groups. Since every tower would have two of one
color, Romina focused on the placement of the duplicate color, using x and o. She
indicated that for each placement of the first or duplicate color, there would be two
possible combinations for the second and third colors. She also indicated that these
combinations would have two opposite arrangements for the second and third colors.
She then tripled the 12 possibilities to represent every color, concluding that there
should be a total of 36. Romina was asked to write her solutions. Figure 1 shows the
refinements in her written work presented at the next after-school session.

Grade 10 Video Episode: Romina's Proof. In an earlier session, Michael
introduced the idea of using binary notation to count towers. Other students soon
integrated binary numbers in their coding. When Michael indicated that he was
"ready to listen", Romina shared her solution with the group.

Romina (March 2002) comments on the way they worked:

If I didn't understand the problem, or 4I I didn't work enough to it, by myself to
understand, and I guess if Michael didn't know where I was heading with what I was
doing, and if I didn't understand where the other person was heading I would like to
work on it before I came up with a couple of options myself to see which one we take.

IS See Muter (1999) and Muter & Maher (1998) for a more complete discussion.

1 - 38

9

PME26 2002

BESTCOPYAVAILABLE



row fixoet.ert
k OW MANY VOwt RJ CA... You. 6,xt-e

Fo.L HZQN w .114 the etkersall 00.110.ga
Arvo KAyznit, At.t. Mace qouoas

YH EAcrt ToweR

X Lvvst cu et CAH ..goblern otstalv.i
enc/u a.4( ihut .1.46tAvr.Z.Geeq.40.0soe

Ufa' dAhrotAK CAlad aAae NW/ e0"bt 4)(44 VW,
4,/ 414 adata, dds,ll Coder,and Iwo cleat.«,c4

.e.edso, .4.24p Met X 'Wen tried &V problem.
with +Ile 0104 yellow (y)18tueas)onct 6teR) (Aro*
Acc. 64.04,8 flu dap/Ault-tar. WA:

0131:1141

011:113

Enaur

3,101:1

=FM
t-It31:3E

4-pottalotooded000lauft
4-coosit ev of Yt

fp, red balk,*
4.5...4-*4F cows

31.4- 410$

v..,0104,24 tfu two 0.4.:(0..sm ..eretty 4024414
.44taZtlati ,O.OACA. bipe rat ANA er

EAligALO.A.A.7 1,44041
4'1 °AV kit A. MARL attar d ltuo "MA& 6(.1ArAte
VeJ444.1 0.4.4 Gag. UC fiNCuA er4iXL KA J JAAct
&WU art.( "I, /*op

CON.k.A.4.hofw0As. A4141 ,...../.4dAje OK 6 by 4.6e4.0i,
.61 tru tiw ftwmix 4000.44.2+4440

toxi4, bumf 6v.i.0 t1$, R - th4 (144,0444..aCe
Caen. ,d,,nu etuu of 5 an.. ,00lot iaah own),
A. f-tu, dm agat- eeatit., 0>tl enmii m.a.(;ta;a1

eik./.41..trudit dC aastune..erd
(AAA. 4.lia..4..3Lo

Figure 1. Romina's written work of her solution to Ankur's Challenge.
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Grade 11 Task: Pascal's Triangle. In May of their junior year, the high school
students returned to school one evening around 7:30 pm for a research session. The
researcher began by asking the students to review what they had discussed in their
pre-calculus class earlier that day. They reported that the class had learned to use a
calculator to find the coefficient of any term in the binomial expansion without
having to write out rows in Pascal's Triangle. The students were also asked why the
addition rule for Pascal's Triangle worked. In response, they showed a 1-1
correspondence between terms in Pascal's Triangle and choices in particular pizza
and tower problems. During their discussion of these problems, they gave meaning
to the addition rule. /6

Video Episode: The Night Session: The students were asked to write the general nth
row in Pascal's triangle, using the bracket notation for nCx. They responded to the
researcher's request to formulate the addition rule with this notation. They explained
the correctness of the notation by referring first to particular cases of the pizza
problem," and then to the meaning and structure of the addition rule as additional
toppings are added.18 Jeff, assisted by Michael, wrote the following equation on the
chalkboard:

IN) +'N .(N+11
\X+1) LX+1)

Challenged by the researcher to express their result in factorial notation, the students
worked together to produce the following equation:

n! (n + I)!

(n x)!x!
+((n

x + I)!(x +DJ ((n x)!(x + I)!

After succeeding to write the addition rule for nCx, Jeff remarks:

Do you know, like, how intimidating this equation must be like if you just picked up a
book and looked at that

16 For a full discussion, see Kiczek (2000); Kiczek & Maher (1998); Kiczek, Maher, & Speiser
(2001).
17 The metaphoric reference is to the general Pizza Problem. Since grade 5, the students worked on
variations of Pizza investigations. The reference here is to a general problem of finding how many
different pizzas that could be made using any number out of, say n, different topping choices and of
considering how they could account for organizations of pizzas as additional toppings are made
available.
Is A detailed analysis of the session is described in Midler & Maher (in progress).
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Mike (April 2002), in an interview 3 years later, was again asked how he might
explain the addition rule. Mike recalled that the group had given a general rule in the
1999 after-school session; he immediately began to reconstruct it. This time, Mike
called a row, r [to denote the number of toppings], and a "spot" in the row, n. He
used the notation to show that "r choose n" plus "r choose n+1" equals "r+1 choose
n+1", referring again to adding pizza toppings to explain the rule.

In the same interview, Mike talked about how he looks for relationships while he
works on problems:

The process while I am doing the problem...I just start understanding more that this is
related to that...how this is related to just a triangle that's made up of numbers. At first
when they showed us a triangle, we didn't know that has anything to do with...once you
start understanding things have a relation to each other you just start convincing
yourself..and then you come to a point where you know it's right, or you think it's right.

STUDENTS REFLECT ON THEIR LEARNING

Through a series of individual and small group interviews, we present student views
on how they structured their learning, thereby gaining insight into their views of the
process.

Just giving the answer was never enough. Jeff (May 1999) indicates that the
students themselves took on the expectation for presenting a careful argument.
Consequently, they reviewed their own argument, focused on meaning, and
anticipated questions and "holes". They questioned each other and put ideas together
before offering their solution to the researchers. Listening to and asking questions of
each other were essential components of the process of working together.

Just giving the answer was never enough, in order to do it. You'd have to have a good,
like, structural record. It's almost like doing, like a proof...like you need to show every
step from point A to point B...you couldn't just, like, skip some things and jump around
You had to go straight, and everything had to be written out and good, and ...
understanding, and if you had a problem with somebody, to ask another question about it,
so you ended up doing whole types of things, just to get from the beginning to the end,

and through it, that's how you really understand what you were doing, that's why we'd
learn, like what we were doing without actually calling anything a certain thing...

We would come to it ourselves. Jeff (May 1999) talks about not being told how to
do things.
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And then, like, later now, we would be doing things, like, "Oh, that's what we were
learning." because Rutgers never really told us what the answers were, or what we were
actually doing...like, 'This is what we're going to do today; it's called the... theorem,' or
anything like that. We would come to it ourselves, and then later, we would realize that
that's what we were doing this whole time.

Jeff (March 2002) indicates a building process.

If we tried to just present a final thing and really didn't know it from the beginning we
couldn't explain it in a way that that you would accept from us. So in order to explain it
in a way that you would accept we'd really have to start from bare bones, from the
beginning.... We didn't start talking about what we were doing with you until very late in
what we were doing. There was not a lot of communication back from them to us about
the work we were doing.

We got so in-depth. Jeff (May 1999) reviews what they accomplished.

Well, even though we didn't spend much time together, and they [researchers] only came
a few times a year, we did so much, we covered so much, we got so in-depth on topics, that
it leaves an impression. I mean, we could talk about doing the blocks in first grade, and
we can almost go through problems: We did shirts and pants in second grade. I mean,
how many other people can tell you the math that they were doing in second grade...like
a word problem, you know? Because you go in deep, you work on it so much, and you go
so far into it, that it just sticks with you...That's why it leaves such an impression,
because of the depth you get into it...

We just sat and thought for hours a day. Romina (July 1999) talks about the
confidence she gained. She indicates that they spent days thinking about problems
and that presenting them to others was a valuable undertaking.

We did a lot of problem solving. We did a lot of thinking. We just sat and thought for
hours a day, and we came up with a lot of interesting things. We were able to go in front
of a large audience and talk about our ideas and argue our points, and prove our points.
I think it was a very good experience.

I think a lot of what we were doing was working together. Jeff (February and
March 2002, respectively) talks about the benefits of collaboration and the frustration
of working alone.
Well that's...how we got to wherever we were going...we were like four different people
with four ideas and we all thought we knew something on how to do a problem but...you
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just cover so much more when everyone is discussing what you're doing, I mean that's
what it was really all about...that's really how we got anywhere was kinda work, doing
our thing together, you know, and using what we each knew, to work something out.

I think it would have been very different if it was all of us producing our own
solutions....I think a lot of what we were doing was working together. I think when you
are working alone, when you reach a part where you don't know anymore it is very easy
to just be frustrated and say I don't know anymore. I'm not going to do this. I can't
think about this. Like forget it. I think that by working with everybody when you got to
that point, you can kind of peak over a little bit and it was all right...it was encouraged
That allowed everybody to really we could all move forward

Everything has to make sense. Romina (March 2002) talks about understanding.

Everything has to make sense in my terms. Someone else may have done it already in a
book, but I just don't understand it unless I try it myself and put it in my own term.

CONCLUSIONS AND IMPLICATIONS

We have engaged in a research program, extended over 14 years, within which sense
making has become a cultural necessity. An aspect of this culture has been the
emergence, beginning in the elementary grades, of argumentation, justification, proof
making, and generalization. Such processes have developed in the context of
coherent strands of mathematics. The reflections by students about their learning over
the project years gives further insight into the process of how they worked together
and structured their learning. They reported that giving the answer was never
enough. They understood that they would be expected to provide a written account to
support their reasoning and that details in arguments were important. They accepted
that they were not to be told the answers or how to solve a problem and took on early
the expectation that they would produce the result and offer appropriate support for it.
The support came from convincing first themselves and then each other. Student
expectations guided how far they were willing to go in solving problems. These
expectations came from interactions with researchers, who challenged them to be
attentive to details, provide evidence for their results, and consider extensions and
generalizations to investigations posed. The students reported that they were aware
of what would be asked of them and took upon themselves on the responsibility of
developing satisfactory solutions beforehand. Their work and conversation, backed
by extensive interviews, indicate that they maintained high expectations for
themselves and for each other, and these expectations help explain the way they
worked together, over months and years. As evidenced by their comments, they took
on, progressively, responsibility for their own learning and for the maintenance of
communication and collaboration in their working groups. They reported increased
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confidence over the long run, which may explain, at least in part, their evident
commitment and responsibility for helping the project to continue and evolve through
time.

REFERENCES

Alston, A.S., Davis, R.B., Maher, C.A., & Martino, A. (1994) Children's use of alternative
structures. Proceedings of the Eighteenth Annual Conference of the International Group
for the Psychology of Mathematics Education. (Vol. 2, pp.248-255). Lisboa, Portugal,
University of Lisboa.

Davis, R. B. (1984). Learning Mathematics: The cognitive science approach. Ablex.

Davis, R. B. & Maher, C. A. (1997). How students think: The role of representations. In L.
English (Ed.), Mathematical reasoning: Analogies, metaphors, and images (pp.93-115).
Hillsdale, NJ: Lawrence E. Erlbaum Associates.

Davis, R. B., & Maher, C. A. (1993). Schools, mathematics and the world of reality. In R.
B. Davis & C. A. Maher (Eds.), Schools, mathematics, and the world of reality. (pp. ix-
xii). MA: Allyn & Bacon.

Davis, R.B. & Maher, C. A. (1990). What do we do when we do mathematics? In R. B.
Davis, C. A. Maher, & N. Noddings (Eds.), Constructivist Views on the Teaching and
Learning of Mathematics Journal for Research in Mathematics Education Monograph
No. 4 (pp. 65-78). Reston, VA: National Council of Teachers of Mathematics.

Davis, R. B., Maher, C. A. & Martino A. (1992). Using videotapes to study the construction
of mathematical knowledge of individual children working in groups. Journal of
Science. Education and Technology. 1(3), 177-189.

Dtirfler, W. (2000). Means for meaning. In P. Cobb & E. Yacks el & K. McClain (Eds.),
Symbolizing and communicating in mathematics classrooms: Perspectives on discourse,
tools, and instructional design (pp. 99-131). Mahwah, NJ: Lawrence Erlbaum,

Ddrfler, W. & Maher, C. A. (in progress). Pizzas and towers as thinking tools. [Manuscript
under preparation].

Goldin, G. A. (2002). Representation in mathematical learning and problem solving. In L.D.
English (Ed.), Handbook of international research in mathematics education (pp.218).
Mahwah, NJ: Lawrence Erlbaun Associates Publishers.

Goldin, G. A. (2000). Affective pathways and representation in mathematical problem
solving. Mathematical Thinking and Learning, 2(3), 209-219.

Kiczek, R. D. (2000). Tracing the development of probabilistic thinking: Profiles from a
longitudinal study. Unpublished doctoral dissertation, Rutgers University, NJ.

Kiczek, R. and Maher, C. A. (1998). Tracing the origins and extensions of mathematical
ideas. Proceedings of the Twentieth Annual Conference of the North American Group for
the Psychology of Mathematics Education. Raleigh, North Carolina, 377-382.

1 - 44 PME26 2002

BEST COPY AVAILABLE

15



Kiczek, R. D., Maher, C. A., & Speiser, R. (2001). Tracing the origins and extensions of
Michael's representation. In A. A. Cuoco & F. R. Curcio (Eds.), The role of
representation in school mathematics (pp. 201-214). NCTM Yearbook 2001. Reston, VA:

Maher, C.A. (1998a). Kommunikation och konstruktivistisk undervisning (Communication
and constructivist teaching),In Arne Engrstom (Red.), Matematik och reflektion (pp.124-
143) Lund, Sweden: Studenlitteratur.

Maher, C.A. (1998b). Constructivism and Constructivist Teaching - Can They Co-exist? In
Ole Bjorkqvist (Ed.), Mathematics Teaching from a Constructivist Point of View (pp.29-
42). Finland: Abo Akademi, Pedagogiska fakulteten.

Maher, C. A., Alston, A., Dann, E., Steencken (2000). Private Universe Project in
Mathematics series content guide: A professional development workshop series for K-12
teachers of mathematics. Cambridge, MA: Harvard Smithsonian Center for Astrophysics
and the Robert B. Davis Institute for Learning.

Maher, C. A. & Davis, R. B. (1995). Children's explorations leading to proof. In C. Hoyles
and L. Healy (eds.), Justifying and Proving in School Mathematics, (pp. 87-105).
London: Mathematical Sciences Group, Institute of Education, University of London.

Maher, C. A. & Davis, R.B. (1990). Building representations of children's meanings. In R.
B. Davis, C. A. Maher, & N. Noddings (Eds.), Constructivist Views on the Teaching and
Learning of Mathematics Journal for Research in Mathematics Education Monograph
No. 4 (pp. 79-90). Reston, VA: National Council of Teachers of Mathematics.

Maher, C. A. & Davis, R.B.& Alston, A. (1992). Teachers paying attention to students'
thinking. Arithmetic Teacher 34-37.

Maher, C.A. & Kiczek, R.D. (2000). Long Term Building of Mathematical Ideas Related to
Proof Making. Proof and proving in Mathematics Education [Online].
http://www.cabri.net] (Preuve/ICME9TG I 2/ICME9TG 12Contributions/MaherICME00.html

Maher, C. A. & Martino, A. M. (2001). From patterns to theories: Conditions for conceptual
change. The Journal of Mathematical Behavior, 19 (2), pp. 247-271.

Maher, A.M. & Martino, C.A. (2000). Teacher questioning to promote justification and
generalisation in mathematics. Journal of Mathematical Behavior, 18(1), 53-78.

Maher, C. A. & Martino, A. M. (1997). Conditions for conceptual change: From pattern
recognition to theory posing. In H. Mansfield & N. H. Pateman (Eds.), Young Children
and Mathematics: Concepts and Their Representation. Sydney, Australia: Australian
Association of Mathematics Teachers.

Maher, C. A. & Martino, A. M. (1996a). Young children invent methods of proof: The
"Gang of Four." In P. Nesher, L.P. Steffe, P. Cobb, B. Greer and J. Goldin (Eds.),
Theories of mathematical learning (pp. 431-447). Mahwah, NJ: Lawrence E. Erlbaum.

Maher, C. A. & Martino, A. M. (1996b). The Development of the idea of mathematical
proof: A 5-year case study. In F. Lester (Ed.), Journal for Research in Mathematics
Education, 27 (2), 194-214.

PME26 2002 k

16

1 -45

BESTCOPYAVA1LABLE



Maher, C. A. & Martino, A.M. (1992). Teachers building on students' thinking. Arithmetic
Teacher. 32-37.

Maher, C. A., Martino, A.M., & Pantozzi, R. (1995). Listening and questioning better: A
case study. In L. Meira & D. Carraher (Eds.), Proceedings of the 19th International
Conference for the Psychology of Mathematics Education (Vol. 3, pp. 82-89). Brazil.

Maher, C. A., Pantozzi, R., Martino, A. M., Steencken, E. P. & Deming, L. S. (1996).
Analyzing students' personal histories: Foundations of mathematical ideas. Paper
presented to the American Educational Research Association, New York.

Maher, C. A. & Speiser, R. (1997). How far can you go with block towers? Stephanie's
Intellectual Development. Journal of Mathematical Behavior. 16(2), 125-132.

Martino, A. M. (1992). Elementary students' construction of mathematical knowledge:
Unpublished doctoral dissertation, Rutgers, University, NJ.

Muter, E. M. (1999). The development of student ideas in combination and proof:
Unpublished doctoral dissertation, Rutgers, University, NJ

Muter, E. M. &. Maher, C. A. (1998). Recognizing isomorphism and building proof:
Revisiting earlier ideas. In S. Berenson et al. (Eds.), Proceedings of the twentieth annual
meeting of the North American Chapter of the International Group for the Psychology of
Mathematics Education (Vol. 2, pp. 461-467). Raleigh: ERIC Clearing House for
Science, Math and Environmental Education.

O'Brien, M. J. (1995). Changing a school mathematics program: A ten year study.
Unpublished doctoral dissertation, Rutgers, University, NJ.

Pirie, S. & Kieren, T. (1994). Growth in mathematical understanding: How can we
characterise it and how can we represent it. In W. DOrfler & P. Cobb (Eds.), Educational
Studies in Mathematics (Vol. 26, 2-3, pp. 165-190). Dordrecht, The Netherlands: Kluwer.

Powell, A. B., Francisco, J. M., & Maher, C. A. (2001). An analytical model for studying
the development of mathematical ideas using videotape data. Paper presented at the 23rd
Annual Meeting of the PME-NA, Utah.

Speiser, R. (1998). Unpublished research notes on prototype-coding schemes.

Speiser, R, Walter, C. N. & Maher C.A. (2001). Representing change. In M. van den
Heuvel-Panhhizen (Ed.), Proceedings of the 25th Conference of the International Group
for the Psychology of Mathematics Education, (Vol. 4, pp.209-216). The Netherlands:
Freudenthal Institute, Utrecht University.

Steencken, E. (2001). Tracing the growth of understanding of fraction ideas; A fourth grade
case study. Published doctoral dissertation. Rutgers University, NJ. Dissertation
Abstracts International 3009381.

I - 46 PME26 2002

BEST COPY AVAILABLE

17



U.S. Department of Education
Office of Educational Research and Improvement (OERI)

National Library of Education (NLE)

Educational Resources Information Center (ERIC)

NOTICE

Reproduction Basis

Eductional Resources Int orraelion CeNPJ

This document is covered by a signed "Reproduction Release (Blanket)"
form (on file within the ERIC system), encompassing all or classes of
documents from its source organization and, therefore, does not require a
"Specific Document" Release form.

This document is Federally-funded, or carries its own permission to
reproduce, or is otherwise in the public domain and, therefore, may be
reproduced by ERIC without a signed Reproduction Release form (either
"Specific Document" or "Blanket").

EFF-089 (1/2003)


